

S.R.325 1°lotto Loc. Le Piena - Miglioramento e l'adeguamento della Viabilità regionale di fondovalle, mediante realizzazione di percorsi pedonali protetti. Messa in sicurezza della mobilità pedonale dal km 56+900 al km 57+200 - Comune di Vernio

Provincia di Prato

MIMS_Aree Interne

Comune di Firenzuola

mune di Comui

PROGETTO DEFINITIVO

OGGETTO:

RELAZIONE DI VERIFICA DEL VERSANTE

ELABORATO

R05

SCALA --

NOME FILE:

C.U.P.:

PRATICA N.

Data redazione elaborato:

08.2022

R.U.P.: Ing. Maria Teresa Carosella

PROGETTISTA E COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE:

dott. ing. Elena Barba

Via F. Pacini 46-48, 50144 Firenze (FI) 3282091810 ing.elena.barba@gmail.com elena.barba@ingpec.eu P.IVA 05400250485- CF BRBLNE76M67D612K iscritta all'ordine degli ingegneri della Prov. di Firenze al n° 5019

Percorso: C:\Users\utente\Google Drive\LAVORI\CMFI\ELEBORATI DEFINITIVO

Si riporta di seguito la verifica del versante con l'opera di progetto.

Analisi di stabilità dei pendii con: BISHOP (1955)

Normativa	NTC 2018
Numero di strati	4,0
Numero dei conci	10,0
Grado di sicurezza ritenuto accettabile	1,1
Parametri geotecnici da usare. Angolo di attrito:	Picco
Analisi	Condizione drenata

Superficie di forma circolare

Maglia dei Centri

Ascissa vertice sinistro inferiore xi	1,63 m
Ordinata vertice sinistro inferiore yi	8,03 m
Ascissa vertice destro superiore xs	9,07 m
Ordinata vertice destro superiore ys	15,47 m
Passo di ricerca	10,0
Numero di celle lungo x	10,0
Numero di celle lungo y	10,0
Coefficiente azione sismica orizzontale	0,285
Coefficiente azione sismica verticale	0.142

Vertici profilo

Nr	Χ	у
	(m)	(m)
1	-7,0	
2	5,0	5,5
3	5,35	
4	5,66	7,75
5	5,66	7,75
6	15,66	7,75
7	19,04	7,75

Vertici strato1

N	X (m)	y (m)						
1	-7,0	1,86						
2	5,66	5,25						
3	19,04	8,83						

Vertici strato2

N	Х	У
	(m)	(m)
1	-7,0	-0,64
2	5,66	2,75
3	19,04	6,3 3

Vertici strato3

N	X	У							
	(m)	(m)							

1	-7,0	-2,64
2	5,66	0,75
3	19,04	4,33

Coefficienti parziali per i parametri geotecnici del terreno

Tangente angolo di resistenza al taglio	1,25
Coesione efficace	1,25
Coesione non drenata	1,4
Riduzione parametri geotecnici terreno	Si

Stratigrafia

c: coesione; cu: coesione non drenata; Fi: Angolo di attrito; G: Peso Specifico; Gs: Peso Specifico Saturo; K: Modulo di Winkler

William								
Strato	С	cu	Fi	G	Gs	Litologia		
	(kg/cm²)	(kg/cm²)	(°)	(Kg/m³)	(Kg/m³)			
1	0		15	1529,574	1529,574	Livello 1 -		
						riporto		
2	0		28,4	1835,489	1835,489	Livello 2 -		
						sabbie e		
						ghiaie		
3	0		34	1937,461	1937,461	Livello 3 -		
						ghiaie con		
						sabbie		
4	0		45	1988,447	1988,447	Livello 4 -		
						ghiaie		

Pali...

N°	x (m)	y (m)	Diametro (m)	Lunghezza (m)	Inclinazione (°)	Interasse (m)
1	5,19	5	0,22	6	90	0,8
2	5,94	5	0,22	6	90	0,8

Carichi concentrati

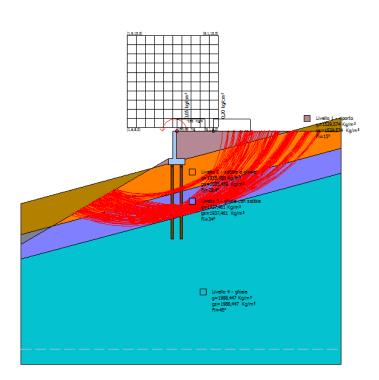
N°	Х	У	Fx	Fy	M		
	(m)	(m)	(Kg)	(Kg)	(Kgm)		
1	5.5	7.75	150	0	-150		

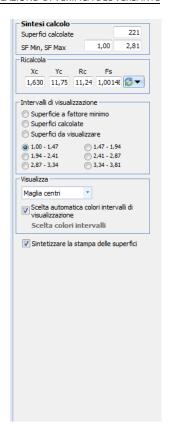
Carichi distribuiti

N°	xi (m)	yi (m)	xf (m)	yf (m)	Carico esterno (kg/cm²)
1	5,71	7,75	7,96	7,75	0,05
2	8,66	7,75	11,66	7,75	0,2

Risultati analisi pendio [A2+M2+R2]

Fs minimo individuato	1,0
Ascissa centro superficie	1,63 m
Ordinata centro superficie	11,75 m
Raggio superficie	11,24 m





Numero di superfici esaminate....(221)

========				======
N°	Xo	Yo	Ro	Fs
1	1,6	8,0	 7,8	1,19
2	2,0	8,4	7,9	1,21
3	2,4	8,0	7,5	1,29
4	2,7	8,4	7,6	1,28
5	3,1	8,0	7,3	1,34
6	3,5	8,4	7,4	1,33
7	3,9	8,0	7,1	1,43
8	4,2	8,4	7,2	1,42
9	4,6	8,0	6,8	1,50
10	5,0	8,4	9,9	1,53
11	5,3	8,0	9,5	1,59
12	5,7	8,4	10,4	1,70
13	6,1	8,0	10,0	1,77
14	6,5	8,4	9,9	1,71
15	6,8	8,0	9,6	1,80
16	7,2	8,4	10,3	1,91
17	7,6	8,0	10,0	2,00
18	8,0	8,4	10,4	2,01
19	8,3	8,0	10,1	2,14
20	8,7	8,4	9,8	2,36
21	9,1	8,0	9,0	2,81
22	1,6	8,8	8,2	1,13
23	2,0	9,1	8,4	1,16
24	2,4	8,8	8,0	1,20

25	2,7	9,1	8,2	1,19
26	3,1	8,8	7,8	1,25
27	3,5	9,1	8,0	1,26
28	3,9	8,8	7,6	1,35
29	4,2	9,1	7,7	1,32
30	4,6	8,8	7,3	1,42
31	5,0	9,1	8,3	1,42
32	5,3	8,8	7,8	1,60
33	5,7	9,1	7,9	1,57
34	6,1	8,8	10,3	1,64
35	6,5	9,1	7,7	1,70
36	6,8	8,8	7,4	1,82
37	7,2	9,1	10,5	1,76
38	7,6	8,8	10,1	1,82
39	8,0	9,1	10,6	1,85
40	8,3	8,8	10,2	2,14
41	8,7	9,1	7,5	2,51
42	9,1	8,8	9,6	2,68
43	1,6	9,5	9,5	1,07
44	2,0	9,9	9,7	1,06
45	2,4	9,5	8,5	1,15
46	2,7	9,9	8,7	1,16
47	3,1	9,5	8,4	1,10
48	3,5	9,9	8,6	1,22
49	3,9	9,5		1,25
50	4,2		8,2	1,23
50 51		9,9	9,2	
52	4,6	9,5	8,7	1,35
	5,0	9,9	8,7	1,40
53 54	5,3	9,5	8,3	1,48
	5,7	9,9	8,4	1,53
55 56	6,1	9,5	8,0	1,62
56	6,5	9,9	11,2	1,64
57 50	6,8	9,5	10,8	1,71
58	7,2	9,9	11,4	1,74
59	7,6	9,5	11,0	1,79
60	8,0	9,9	7,9	2,03
61	8,3	9,5	7,7	2,13
62	8,7	9,9	7,9	2,27
63	9,1	9,5	7,3	2,60
64	1,6	10,3	10,1	1,02
65	2,0	10,6	10,3	1,03
66	2,4	10,3	10,0	1,08
67	2,7	10,6	10,2	1,12
68	3,1	10,3	9,0	1,18
69 7 0	3,5	10,6	10,1	1,18
70	3,9	10,3	9,6	1,22
71	4,2	10,6	9,6	1,28
72	4,6	10,3	9,2	1,34
73	5,0	10,6	9,2	1,40
74	5,3	10,3	8,8	1,45
75	5,7	10,6	8,9	1,52
76	6,1	10,3	11,6	1,58
77	6,5	10,6	9,4	1,68

78	6,8	10,3	8,3	1,76
79	7,2	10,6	9,1	1,74
80	7,6	10,3	8,2	2,00
81	8,0	10,6	8,9	1,91
82	8,3	10,3	8,1	2,14
83	8,7	10,6	8,7	2,08
84	9,1	10,3	8,1	2,42
85	1,6	11,0	10,6	1,01
86	2,0	11,4	10,9	1,04
87	2,4	11,0	10,6	1,09
88	2,7	11,4	9,1	1,10
89	3,1	11,0	10,5	1,14
90	3,5	11,4	8,8	1,18
91	3,9	11,0	10,1	1,23
92	4,2	11,4	10,1	1,26
93	4,6	11,0	9,7	1,32
94	5,0	11,4	9,7	1,37
95	5,3	11,0	9,3	1,43
96	5,7	11,4	10,1	1,46
97	6,1	11,0	9,7	1,51
98	6,5	11,4	9,8	1,56
99	6,8	11,0	9,5	1,63
100			9,6	
	7,2	11,4		1,72
101	7,6	11,0	9,2	1,82
102	8,0	11,4	9,3	1,89
103	8,3	11,0	9,0	1,98
104	8,7	11,4	9,5	2,11
105	9,1	11,0	8,9	2,26
106	1,6	11,8	11,2	1,00
107	2,0	12,1	11,5	1,04
108	2,4	11,8	11,2	1,06
109	2,7	12,1	9,7	1,08
110	3,1	11,8	9,3	1,12
111	3,5	12,1	11,1	1,17
112	3,9	11,8	10,6	1,22
113	4,2	12,1	10,6	1,26
114	4,6	11,8	10,2	1,31
115	5,0	12,1	11,0	1,33
116	5,3	11,8	10,5	1,39
117	5,7	12,1	10,6	1,47
118	6,1	11,8	10,2	1,49
119	6,5	12,1	10,3	1,57
120	6,8	11,8	9,9	1,68
121	7,2	12,1	10,5	1,66
122	7,6	11,8	9,7	1,86
123	8,0	12,1	10,2	1,83
124	8,3	11,8	9,9	1,88
125	8,7	12,1	9,9	2,02
126	9,1	11,8	9,6	2,16
127	1,6	12,5	11,9	1,02
128	2,0	12,9	12,1	1,04
129	2,4	12,5	11,8	1,06
130	2,7	12,9	10,3	1,07

131	3,1	12,5	9,9	1,13
132	3,5	12,9	11,6	1,19
133	3,9	12,5	11,1	1,23
134	4,2	12,9	11,9	1,24
135	4,6	12,5	11,4	1,28
136	5,0	12,9	11,5	1,35
137	5,3	12,5	11,0	1,41
138	5,7	12,9	11,1	1,45
139	6,1	12,5	10,7	1,51
140	6,5	12,9	11,3	1,52
141	6,8	12,5	10,9	1,58
142	7,2	12,9	11,0	1,65
143	7,6	12,5	10,6	1,75
144	8,0	12,9	11,1	1,76
145	8,3	12,5	10,3	1,92
146	8,7	12,9	10,7	1,96
147	9,1	12,5	10,3	2,10
148	1,6	13,2	12,5	1,02
149	2,0	13,6	11,2	1,04
150	2,4	13,2	10,8	1,04
151	2,7	13,6	12,5	1,11
152	3,1	13,2	12,0	1,14
153	3,5	13,6	12,8	1,16
154	3,9	13,2	12,4	1,20
155	4,2	13,6	12,4	1,25
156	4,6	13,2	11,9	1,29
157	5,0	13,6	12,0	1,33
158	5,3	13,2	11,5	1,39
159	5,7	13,6	12,2	1,41
160	6,1	13,2	11,8	1,46
161	6,5	13,6	11,8	1,51
162	6,8	13,2	11,4	1,61
163	7,2	13,6	11,9	1,62
164	7,6	13,2	11,5	1,71
165	8,0	13,6	11,5	1,76
166	8,3	13,2	11,1	1,85
167	8,7	13,6	11,4	1,92
168	9,1	13,2	10,9	2,06
169	1,6	14,0	13,2	1,03
170	2,0	14,4	11,9	1,04
171	2,4	14,0	13,0	1,07
172	2,7	14,4	13,8	1,10
173	3,1	14,0	13,3	1,13
174	3,5	14,4	13,3	1,16
175	3,9	14,0	12,9	1,19
176	4,2	14,4	12,9	1,25
177	4,6	14,0	12,4	1,30
178	5,0	14,4	13,1	1,32
179	5,3	14,0	12,6	1,36
180	5,7	14,4	12,7	1,41
181	6,1	14,0	12,2	1,46
182	6,5	14,4	12,8	1,48
183	6,8	14,0	12,3	1,55

184	7,2	14,4	12,4	1,63
185	7,6	14,0	11,9	1,72
186	8,0	14,4	12,3	1,71
187	8,3	14,0	11,8	1,81
188	8,7	14,4	11,8	2,00
189	9,1	14,0	11,6	2,05
190	1,6	14,7	12,3	1,03
191	2,0	15,1	14,8	1,05
192	2,4	14,7	14,3	1,07
193	2,7	15,1	14,3	1,10
194	3,1	14,7	13,8	1,13
195	3,5	15,1	13,8	1,18
196	3,9	14,7	13,4	1,21
197	4,2	15,1	14,0	1,23
198	4,6	14,7	13,6	1,27
199	5,0	15,1	13,6	1,34
200	5,3	14,7	13,1	1,38
201	5,7	15,1	13,7	1,38
202	6,1	14,7	13,2	1,43
203	6,5	15,1	13,3	1,52
204	6,8	14,7	12,8	1,58
205	7,2	15,1	13,2	1,59
206	7,6	14,7	12,7	1,67
207	8,0	15,1	12,7	1,76
208	8,3	14,7	12,3	1,87
209	8,7	15,1	12,3	2,09
210	9,1	14,7	11,8	2,24
211	1,6	15,5	15,2	1,03
212	2,4	15,5	14,8	1,07
213	3,1	15,5	14,3	1,14
214	3,9	15,5	14,5	1,19
215	4,6	15,5	14,1	1,29
216	5,4	15,5	14,2	1,34
217	6,1	15,5	13,7	1,43
218	6,8	15,5	13,7	1,54
219	7,6	15,5	13,2	1,68
220	8,3	15,5	13,0	1,85
221	9,1	15,5	12,3	2,30

CENNI TEORICI

Definizione

Per pendio s'intende una porzione di versante naturale il cui profilo originario è stato modificato da interventi artificiali rilevanti rispetto alla stabilità. Per frana s'intende una situazione di instabilità che interessa versanti naturali e coinvolgono volumi considerevoli di terreno.

Introduzione all'analisi di stabilità

La risoluzione di un problema di stabilità richiede la presa in conto delle equazioni di campo e dei legami costitutivi. Le prime sono di equilibrio, le seconde descrivono il comportamento del terreno. Tali equazioni risultano particolarmente complesse in quanto i terreni sono dei sistemi multifase, che possono essere ricondotti a sistemi monofase solo in condizioni di terreno secco, o di analisi in condizioni drenate.

Nella maggior parte dei casi ci si trova a dover trattare un materiale che se saturo è per lo meno bifase, ciò rende la trattazione delle equazioni di equilibrio notevolmente complicata. Inoltre è praticamente impossibile definire una legge costitutiva di validità generale, in quanto i terreni presentano un comportamento non-lineare già a piccole deformazioni, sono anisotropi ed inoltre il loro comportamento dipende non solo dallo sforzo deviatorico ma anche da quello normale. A causa delle suddette difficoltà vengono introdotte delle ipotesi semplificative:

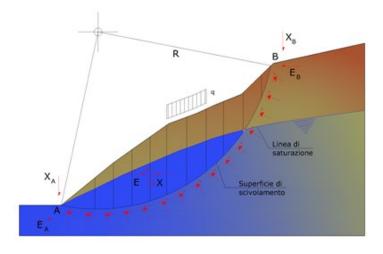
- 1. Si usano leggi costitutive semplificate: modello rigido perfettamente plastico. Si assume che la resistenza del materiale sia espressa unicamente dai parametri coesione (c) e angolo di resistenza al taglio (②), costanti per il terreno e caratteristici dello stato plastico; quindi si suppone valido il criterio di rottura di Mohr-Coulomb.
- 2. In alcuni casi vengono soddisfatte solo in parte le equazioni di equilibrio.

Metodo equilibrio limite (LEM)

Il metodo dell'equilibrio limite consiste nello studiare l'equilibrio di un corpo rigido, costituito dal pendio e da una superficie di scorrimento di forma qualsiasi (linea retta, arco di cerchio, spirale logaritmica); da tale equilibrio vengono calcolate le tensioni da taglio (②) e confrontate con la resistenza disponibile (②f), valutata secondo il criterio di rottura di Coulomb, da tale confronto ne scaturisce la prima indicazione sulla stabilità attraverso il coefficiente di sicurezza:

$$F = \tau_f / \tau$$

Tra i metodi dell'equilibrio limite alcuni considerano l'equilibrio globale del corpo rigido (Culman), altri a causa della non omogeneità dividono il corpo in conci considerando l'equilibrio di ciascuno (Fellenius, Bishop, Janbu ecc.). Di seguito vengono discussi i metodi dell'equilibrio limite dei conci.



Metodo dei conci

La massa interessata dallo scivolamento viene suddivisa in un numero conveniente di conci. Se il numero dei conci è pari a n, il problema presenta le seguenti incognite:

- n valori delle forze normali N_i agenti sulla base di ciascun concio;
- n valori delle forze di taglio alla base del concio T_i;
- (n-1) forze normali Ei agenti sull'interfaccia dei conci;
- (n-1) forze tangenziali X_i agenti sull'interfaccia dei conci;
- n valori della coordinata a che individua il punto di applicazione delle E;
- (n-1) valori della coordinata che individua il punto di applicazione delle X_i;
- una incognita costituita dal fattore di sicurezza F.

Complessivamente le incognite sono (6n-2).

Mentre le equazioni a disposizione sono:

- equazioni di equilibrio dei momenti n;
- equazioni di equilibrio alla traslazione verticale n;
- equazioni di equilibrio alla traslazione orizzontale n;
- equazioni relative al criterio di rottura n.

Totale numero di equazioni 4n.

Il problema è staticamente indeterminato ed il grado di indeterminazione è pari a :

$$i = (6n-2)-(4n) = 2n-2$$

Il grado di indeterminazione si riduce ulteriormente a (n-2) in quanto si fa l'assunzione che N_i sia applicato nel punto medio della striscia. Ciò equivale ad ipotizzare che le tensioni normali totali siano uniformemente distribuite. I diversi metodi che si basano sulla teoria dell'equilibrio limite si differenziano per il modo in cui vengono eliminate le (n-2) indeterminazioni.

Metodo di Fellenius (1927)

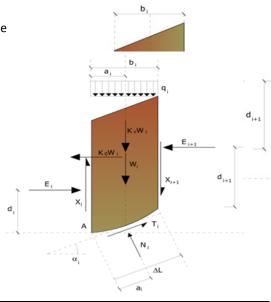
Con questo metodo (valido solo per superfici di scorrimento di forma circolare) vengono trascurate le forze di interstriscia pertanto le incognite si riducono a:

- n valori delle forze normali N_i;
- n valori delle forze da taglio T_i;
- 1 fattore di sicurezza.

Incognite (2n+1).

Le equazioni a disposizione sono:

- n equazioni di equilibrio alla traslazione verticale;
- n equazioni relative al criterio di rottura;
- equazione di equilibrio dei momenti globale.



$$F = \frac{\sum \left\{ c_i \times l_i + (W_i \times cos\alpha_i - u_i \times l_i) \times tan \phi_i \right\}}{\sum W_i \times sin\alpha_i}$$

Questa equazione è semplice da risolvere ma si è trovato che fornisce risultati conservativi (fattori di sicurezza bassi) soprattutto per superfici profonde.

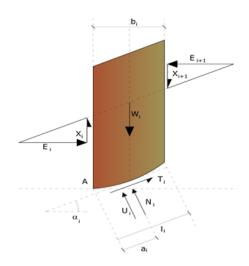
Metodo di Bishop (1955)

Con tale metodo non viene trascurato nessun contributo di forze agenti sui blocchi e fu il primo a descrivere i problemi legati ai metodi convenzionali. Le equazioni usate per risolvere il problema sono:

$$\sum F_y = 0$$
, $\sum M_0 = 0$ Criterio di rottura

$$F = \frac{\Sigma \left\{c_{i} \times b_{i} + \left(W_{i} - u_{i} \times b_{i} + \Delta X_{i}\right) \times \tan \varphi_{i}\right\} \times \frac{\sec \alpha_{i}}{1 + \tan \alpha_{i} \times \tan \varphi_{i} / F}}{\Sigma W_{i} \times \sin \alpha_{i}}$$

I valori di F e di 🏿 X per ogni elemento che soddisfano questa equazione danno una soluzione rigorosa al problema. Come prima approssimazione conviene porre 🛳 X = 0 ed iterare per il calcolo del fattore di sicurezza, tale procedimento è noto come metodo di **Bishop ordinario**, gli errori commessi rispetto al metodo completo sono di circa 1 %.

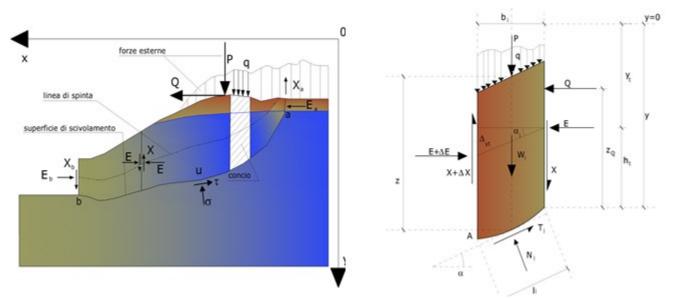


Metodo di Janbu (1967)

Janbu estese il metodo di Bishop a superfici di scorrimento di forma qualsiasi.

Quando vengono trattate superfici di scorrimento di forma qualsiasi il braccio delle forze cambia (nel caso delle superfici circolari resta costante e pari al raggio). A tal motivo risulta più conveniente valutare l'equazione del momento rispetto allo spigolo di ogni blocco.

$$F = \frac{\Sigma \left\{ c_{i} \times b + \left(W_{i} - u_{i} \times b_{i} + \Delta X_{i}\right) \times \tan \phi_{i} \right\} \times \frac{\sec^{2} \alpha_{i}}{1 + \tan \alpha_{i} \times \tan \phi_{i} / F}}{\Sigma W_{i} \times \tan \alpha_{i}}$$

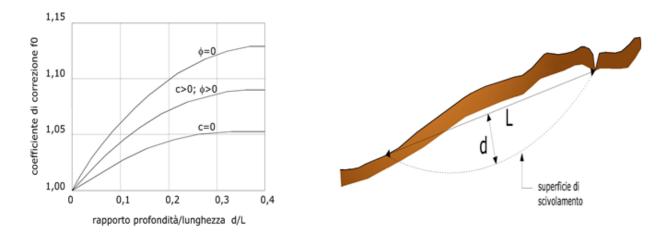


Azioni sul concio i-esimo secondo le ipotesi di Janbu e rappresentazione d'insieme dell'ammasso

Assumendo $\mathbb{Z}X_i = 0$ si ottiene il metodo ordinario. Janbu propose inoltre un metodo per la correzione del fattore di sicurezza ottenuto con il metodo ordinario secondo la seguente:

$$F_{corretto} = f_0 \cdot F$$

dove f_0 è riportato in grafici funzione di geometria e parametri geotecnici. Tale correzione è molto attendibile per pendii poco inclinati.



Metodo di Bell (1968)

Le forze agenti sul corpo che scivola includono il peso effettivo del terreno, W, le forze sismiche pseudostatiche orizzontali e verticali K_XW e K_ZW , le forze orizzontali e verticali X e Z applicate esternamente al profilo del pendio, infine, la risultante degli sforzi totali normali e di taglio \mathbb{Z} e \mathbb{Z} agenti sulla superficie potenziale di scivolamento. Lo sforzo totale normale può includere un eccesso di pressione dei pori u che deve essere specificata con l'introduzione dei parametri di forza efficace.

In pratica questo metodo può essere considerato come un'estensione del metodo del cerchio di attrito per sezioni omogenee precedentemente descritto da Taylor.

In accordo con la legge della resistenza di Mohr-Coulomb in termini di tensione efficace, la forza di taglio agente sulla base dell'i-esimo concio è data da:

$$T_{i} = \frac{c_{i}L_{i} + (N_{i} - u_{ci}L_{i})\tan \Phi_{i}}{F}$$

in cui:

F = il fattore di sicurezza;

c_i = la coesione efficace (o totale) alla base dell'iesimo concio;

② i = l'angolo di attrito efficace (= 0 con la coesione totale) alla base dell'i-esimo concio;

L_i = la lunghezza della base dell'i-esimo concio;

 u_{ci} = la pressione dei pori al centro della base dell'i-esimo concio.

L'equilibrio risulta uguagliando a zero la somma delle forze orizzontali, la somma delle forze verticali e la somma dei momenti rispetto all'origine.

Viene adottata la seguente assunzione sulla variazione della tensione normale agente sulla potenziale superficie di scorrimento:



$$\sigma_{ci} = \left[C_1 (1 - K_z) \frac{W_i \cos \alpha_i}{L_i} \right] + C_2 f(x_{ci}, y_{ci}, z_{ci})$$

in cui il primo termine dell'equazione include l'espressione:

 $W_i \cos \alpha_i / L_i =$ valore dello sforzo normale totale associato con il metodo ordinario dei conci

Il secondo termine dell'equazione include la funzione:

$$f = \sin 2\pi \left(\frac{x_n - x_{ci}}{x_n - x_0} \right)$$

dove x_0 ed x_n sono rispettivamente le ascisse del primo e dell'ultimo punto della superficie di scorrimento, mentre x_{ci} rappresenta l'ascissa del punto medio della base del concio i-esimo.

Una parte sensibile di riduzione del peso associata con una accelerazione verticale del terreno K_Z g può essere trasmessa direttamente alla base e ciò è incluso nel fattore (1 - K_Z).

Lo sforzo normale totale alla base di un concio è dato da:

$$N_i = \sigma_{ci} L_i$$

La soluzione delle equazioni di equilibrio si ricava risolvendo un sistema lineare di tre equazioni ottenute moltiplicando le equazioni di equilibrio per il fattore di sicurezza F, sostituendo l'espressione di N_i e moltiplicando ciascun termine della coesione per un coefficiente arbitrario C_3 . Qualsiasi coppia di valori del fattore di sicurezza nell'intorno di una stima fisicamente ragionevole può essere usata per iniziare una soluzione iterativa.

Il numero necessario di iterazioni dipende sia dalla stima iniziale sia dalla desiderata precisione della soluzione; normalmente, il processo converge rapidamente.

Metodo di Sarma (1973)

Il metodo di Sarma è un semplice, ma accurato metodo per l'analisi di stabilità dei pendii, che permette di determinare l'accelerazione sismica orizzontale richiesta affinché l'ammasso di terreno, delimitato dalla superficie di scivolamento e dal profilo topografico, raggiunga lo stato di equilibrio limite (accelerazione critica K_C) e, nello stesso tempo, consente di ricavare l'usuale fattore di sicurezza ottenuto come per gli altri metodi più comuni della geotecnica.

Si tratta di un metodo basato sul principio dell'equilibrio limite e delle strisce, pertanto viene considerato l'equilibrio di una potenziale massa di terreno in scivolamento suddivisa in n strisce verticali di spessore sufficientemente piccolo da ritenere ammissibile l'assunzione che lo sforzo normale N_i agisce nel punto medio della base della striscia.

Le equazioni da prendere in considerazione sono:

- L'equazione di equilibrio alla traslazione orizzontale del singolo concio;
- L'equazione di equilibrio alla traslazione verticale del singolo concio;
- L'equazione di equilibrio dei momenti.

Condizioni di equilibrio alla traslazione orizzontale e verticale:

$$N_i \cos \alpha_i + T_i \sin \alpha_i = W_i - \Delta X_i$$

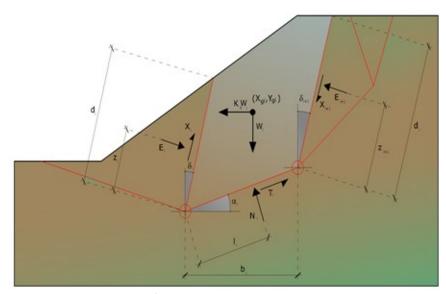
$$T_i \cos \alpha_i - N_i \sin \alpha_i = KW_i + \Delta E_i$$

Viene, inoltre, assunto che in assenza di forze esterne sulla superficie libera dell'ammasso si ha:

$$??E_{i} = 0$$

 $??X_{i} = 0$

dove E_i e X_i rappresentano, rispettivamente, le forze orizzontale e verticale sulla faccia i-esima del concio generico i. L'equazione di equilibrio dei momenti viene scritta scegliendo come punto di riferimento il baricentro dell'intero ammasso; sicché, dopo aver eseguito una serie di posizioni e trasformazioni trigonometriche ed algebriche, nel **metodo di Sarma** la soluzione del problema passa attraverso la risoluzione di due equazioni:



Azioni sull' iesimo concio, metodo di Sarma

$$\begin{split} \sum \Delta X_i \cdot tg \Big(\!\!\! \left. \psi_i^{'} - \alpha_i^{} \right) \!\!\! + \sum \Delta E_i^{} &= \sum \Delta_i^{} - K \cdot \sum W_i^{} \\ \sum \Delta X_i^{} \cdot \left[\!\!\! \left(\!\!\! y_{mi}^{} - y_G^{} \right) \!\!\! \cdot tg \!\!\! \left(\!\!\! \psi_i^{'} - \alpha^{'} \right) \!\!\! + \!\!\! \left(\!\!\! x_i^{'} - x_G^{} \right) \!\!\! \right] \!\!\! = \sum W_i^{} \cdot \left(\!\!\! x_{mi}^{} - x_G^{} \right) \!\!\! + \sum \Delta_i^{} \cdot \left(\!\!\! y_{mi}^{} - y_G^{} \right) \end{split}$$

Ma l'approccio risolutivo, in questo caso, è completamente capovolto: il problema infatti impone di trovare un valore di K (accelerazione sismica) corrispondente ad un determinato fattore di sicurezza; ed in particolare, trovare il valore dell'accelerazione K corrispondente al fattore di sicurezza F = 1, ossia l'accelerazione critica.

Si ha pertanto:

K=Kc Accelerazione critica se F=1

F=Fs Fattore di sicurezza in condizioni statiche se K=0

La seconda parte del problema del Metodo di Sarma è quella di trovare una distribuzione di forze interne X_i ed E_i tale da verificare l'equilibrio del concio e quello globale dell'intero ammasso, senza violazione del criterio di rottura. E' stato trovato che una soluzione accettabile del problema si può ottenere assumendo la seguente distribuzione per le forze X_i :

$$\Delta X_i = \lambda \cdot \Delta Q_i = \lambda \cdot (Q_{i+1} - Q_i)$$

dove Q_i è una funzione nota, in cui vengono presi in considerazione i parametri geotecnici medi sulla i-esima faccia del concio i, e \square rappresenta un'incognita.

La soluzione completa del problema si ottiene pertanto, dopo alcune iterazioni, con i valori di K_C, ② e F, che permettono di ottenere anche la distribuzione delle forze di interstriscia.

Metodo di Spencer (1967)

Il metodo è basato sull'assunzione:

- 1. le forze d'interfaccia lungo le superfici di divisione dei singoli conci sono orientate parallelamente fra loro ed inclinate rispetto all'orizzontale di un angolo 2;
- 2. tutti i momenti sono nulli M_i =0 con i=1....n.

Sostanzialmente il metodo soddisfa tutte le equazioni della statica ed equivale ametodo di Morgenstern e Price quando la funzione f(x) = 1. Imponendo l'equilibrio dei momenti rispetto al centro dell'arco descritto dalla superficie di scivolamento si ha:

1)
$$\sum Q_i R \cos(\alpha - \theta) = 0$$

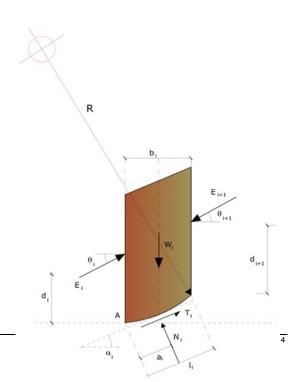
dove:

$$Q_{i} = \frac{\frac{c}{F_{s}} \left(W \cos \alpha - \gamma_{w} hl \sec \alpha \right) \frac{tg\alpha}{F_{s}} - W sen\alpha}{\cos(\alpha - \theta) \left[\frac{F_{s} + tg\phi tg(\alpha - \theta)}{F_{s}} \right]}$$

forza d'interazione fra i conci:

R = raggio dell'arco di cerchio;

 $\pmb{\theta}$ = angolo d'inclinazione della forza Q_i rispetto all'orizzontale.



Imponendo l'equilibrio delle forze orizzontali e verticali si ha rispettivamente:

$$\sum (Q_i \cos \theta) = 0$$
$$\sum (Q_i \sin \theta) = 0$$

Con l'assunzione delle forze Qi parallele fra loro, si può anche scrivere:

$$\sum Q_i = 0$$

Il metodo propone di calcolare due coefficienti di sicurezza: il primo (F_{sm}) ottenibile dalla 1), legato all'equilibrio dei momenti; il secondo (F_{sf}) dalla 2) legato all'equilibrio delle forze. In pratica si procede risolvendo la 1) e la 2) per un dato intervallo di valori dell'angolo θ , considerando come valore unico del coefficiente di sicurezza quello per cui si abbia:

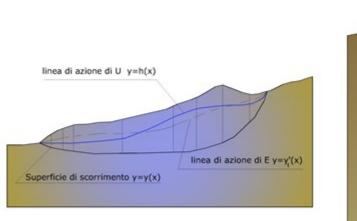
$$F_{sm} = F_{sf}$$

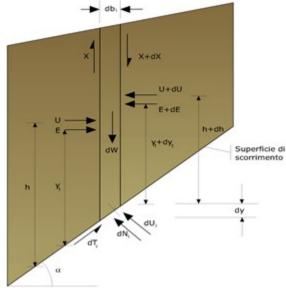
Metodo di Morgenstern e Price (1965)

Si stabilisce una relazione tra le componenti delle forze di interfaccia del tipo $X = \lambda$ f(x)E, dove λ è un fattore di scala e f(x), funzione della posizione di E e di X, definisce una relazione tra la variazione della forza X e della forza E all'interno della massa scivolante. La funzione f(x) è scelta arbitrariamente (costante, sinusoide, semisinusoide, trapezia, spezzata...) e influenza poco il risultato, ma va verificato che i valori ricavati per le incognite siano fisicamente accettabili. La particolarità del metodo è che la massa viene suddivisa in strisce infinitesime alle quali vengono imposte le equazioni di equilibrio alla traslazione orizzontale e verticale e di rottura sulla base delle strisce stesse. Si perviene ad una prima equazione differenziale che lega le forze d'interfaccia incognite E, X, il coefficiente di sicurezza F_S , il peso della striscia infinitesima dW e la risultante delle pressioni neutra alla base dU.

Si ottiene la cosiddetta "equazione delle forze":

$$\begin{split} c'\sec^2\frac{\alpha}{F_s} + tg\phi' & \left(\frac{dW}{dx} - \frac{dX}{dx} - tg\alpha\frac{dE}{dx} - \sec\alpha\frac{dU}{dx}\right) = \\ & = \frac{dE}{dx} - tg\alpha \left(\frac{dX}{dx} - \frac{dW}{dx}\right) \end{split}$$





Azioni sul concio i-esimo secondo le ipotesi di Morgenster e Price e rappresentazione d'insieme dell'ammasso

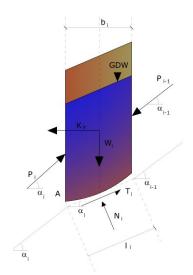
Una seconda equazione, detta "equazione dei momenti", viene scritta imponendo la condizione di equilibrio alla rotazione rispetto alla mezzeria della base:

$$X = \frac{d(E_{\gamma})}{dx} - \gamma \frac{dE}{dx}$$

queste due equazioni vengono estese per integrazione a tutta la massa interessata dallo scivolamento. Il metodo di calcolo soddisfa tutte le equazioni di equilibrio ed è applicabile a superfici di qualsiasi forma, ma implica necessariamente l'uso di un calcolatore.

Metodo di Zeng e Liang (2002)

Zeng e Liang hanno effettuato una serie di analisi parametriche su un modello bidimensionale sviluppato con codice agli elementi finiti, che riproduce il caso di pali immersi in un terreno in movimento (drilled shafts). Il modello bidimensionale riproduce un striscia di terreno di spessore unitario e ipotizza che il fenomeno avvenga in condizioni di deformazione piana nella direzione parallela all'asse dei pali. Il modello è stato utilizzato per indagare l'influenza sulla formazione dell'effetto arco di alcuni parametri come l'interasse fra i pali, il diametro e la forma dei pali, e le proprietà meccaniche del terreno. Gli autori individuano nel rapporto tra l'interasse e il diametro dei i pali (s/d) il parametro adimensionale determinante per la formazione dell'effetto arco. Il problema risulta essere staticamente indeterminato, con grado di indeterminatezza pari a (8n-4), ma nonostante ciò è possibile ottenere una soluzione riducendo il numero delle incognite e assumendo quindi delle ipotesi semplificative, in modo da rendere determinato il problema. Le assunzioni che rendono il problema determinato sono:



- -Ky sono assunte orizzontali per ridurre il numero totale delle incognite da (n-1) a (7n-3);
- -Le forze normali alla base della striscia agiscono nel punto medio, riducendo le incognite da n a (6n-3);
- -La posizione delle spinte laterali è ad un terzo dell'altezza media dell'inter-striscia e riduce le incognite da (n-1) a (5n-2);
- -Le forze (Pi-1) e Pi si assumono parallele all'inclinazione della base della striscia (αi), riducendo il numero di incognite da (n-1) a (4n-1);

-Si assume un'unica costante di snervamento per tutte le strisce, riducendo le incognite da (n) a (3n-1);

Il numero totale di incognite quindi è ridotto a (3n), da calcolare utilizzando il fattore di trasferimento di carico. Inoltre si deve tener presente che la forza di stabilizzazione trasmessa sul terreno a valle dei pali risulta ridotta di una quantità R, chiamato fattore di riduzione, calcolabile come:

$$R = \frac{1}{s/d} + \left(1 - \frac{1}{s/d}\right) \cdot R_{p}$$

Il fattore R dipende quindi dal rapporto fra l'interasse presente fra i pali e il diametro dei pali stessi e dal fattore R_p che tiene conto dell'effetto arco.

Valutazione dell'azione sismica

La stabilità dei pendii nei confronti dell'azione sismica viene verificata con il metodo pseudo-statico. Per i terreni che sotto l'azione di un carico ciclico possono sviluppare pressioni interstiziali elevate viene considerato un aumento in percento delle pressioni neutre che tiene conto di questo fattore di perdita di resistenza.

Ai fini della valutazione dell'azione sismica vengono considerate le seguenti forze:

$$F_{H} = K_{x} W$$
$$F_{V} = K_{v} W$$

Essendo:

- F_H e F_V rispettivamente la componente orizzontale e verticale della forza d'inerzia applicata al baricentro del concio;
- W peso concio;
- K_x coefficiente sismico orizzontale;
- **K_V** coefficiente sismico verticale.

Ricerca della superficie di scorrimento critica

In presenza di mezzi omogenei non si hanno a disposizione metodi per individuare la superficie di scorrimento critica ed occorre esaminarne un numero elevato di potenziali superfici.

Nel caso vengano ipotizzate superfici di forma circolare, la ricerca diventa più semplice, in quanto dopo aver posizionato una maglia dei centri costituita da m righe e n colonne saranno esaminate tutte le superfici aventi per centro il generico nodo della maglia mên e raggio variabile in un determinato range di valori tale da esaminare superfici cinematicamente ammissibili.

Stabilizzazione di pendii con l'utilizzo di pali

La realizzazione di una cortina di pali, su pendio, serve a fare aumentare la resistenza al taglio su determinate superfici di scorrimento. L'intervento può essere conseguente ad una stabilità già accertata, per la quale si conosce la superficie di scorrimento oppure, agendo preventivamente, viene progettato in relazione alle ipotetiche superfici di rottura che responsabilmente possono essere assunte come quelle più probabili. In ogni caso si opera considerando una massa di terreno in movimento su un ammasso stabile sul quale attestare, per una certa lunghezza, l'allineamento di pali.

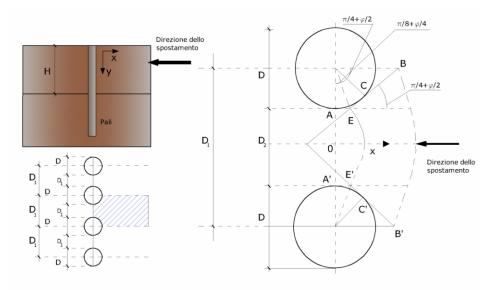
Il terreno, nelle due zone, ha una influenza diversa sull'elemento monoassiale (palo): di tipo sollecitativi nella parte superiore (palo passivo – terreno attivo) e di tipo resistivo nella zona sottostante (palo attivo – terreno passivo). Da questa interferenza, fra "sbarramento" e massa in movimento, scaturiscono le azioni stabilizzanti che devono perseguire le seguenti finalità:

- 1. conferire al pendio un coefficiente di sicurezza maggiore di quello posseduto;
- 2. essere assorbite dal manufatto garantendone l'integrità (le tensioni interne, derivanti dalle sollecitazioni massime trasmesse sulle varie sezioni del singolo palo, devono risultare inferiori a quelle

ammissibili del materiale) e risultare inferiori al carico limite sopportabile dal terreno, calcolato, lateralmente considerando l'interazione (palo-terreno).

Carico limite relativo all'interazione fra i pali ed il terreno laterale

Nei vari tipi di terreno che non hanno un comportamento omogeneo, le deformazioni in corrispondenza della zona di contatto non sono legate fra di loro. Quindi, non potendo associare al materiale un modello di comportamento perfettamente elastico (ipotesi che potrebbe essere assunta per i materiali lapidei poco fratturati), generalmente si procede imponendo che il movimento di massa sia nello stato iniziale e che il terreno in adiacenza ai pali sia nella fase massima consentita di plasticizzazione, oltre la quale si potrebbe verificare l'effetto indesiderato che il materiale possa defluire, attraverso la cortina di pali, nello spazio intercorrente fra un elemento e l'altro.



Imponendo inoltre che il carico assorbito dal terreno sia uguale a quello associato alla condizione limite ipotizzata e che fra due pali consecutivi, a seguito della spinta attiva, si instauri una sorta di effetto arco, gli autori T. Ito e T. Matsui (1975) hanno ricavato la relazione che permette di determinare il carico limite. A questa si è pervenuto facendo riferimento allo schema statico, disegnato nella figura precedente e alle ipotesi anzidette, che schematicamente si ribadiscono.

- Sotto l'azione della spinte attiva del terreno si formano due superfici di scorrimento localizzate in corrispondenza delle linee AEB ed A'E'B;
- Le direzioni EB ed E'B' formano con l'asse x rispettivamente angoli $+(45 + \phi/2)$ e $-(45 + \phi/2)$;
- Il volume di terreno, compreso nella zona delimitata dai vertici AEBB'E'A' ha un comportamento plastico, e quindi è consentita l'applicazione del criterio di rottura di Mohr-coulomb;
- La pressione attiva del terreno agisce sul piano A-A';
- I pali sono dotati di elevata rigidezza a flessione e taglio.

Detta espressione, riferita alla generica profondità Z, relativamente ad un spessore di terreno unitario, è la seguente:

$$P(Z) = C \cdot D_{1}(D_{1}/D_{2})^{k1} \bigg[1 \bigg/ \Big(N_{\phi} tag\phi \Big) \bigg(e^{k2} - 2 \Big(N_{\phi} \Big)^{1/2} tag\phi - 1 \bigg) + K3 \bigg] - C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big)^{1/2} \bigg] + \gamma Z \bigg/ N_{\phi} \bigg[D_{1}(D_{1}/D_{2})^{k1} \cdot e^{k2} - D_{2} \bigg] \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big)^{1/2} \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big)^{1/2} \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big)^{1/2} \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big)^{1/2} \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big)^{1/2} \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big)^{1/2} \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big)^{1/2} \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big)^{1/2} \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big)^{1/2} \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big)^{1/2} \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big)^{1/2} \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big)^{1/2} \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big)^{1/2} \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big)^{1/2} \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big)^{1/2} \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big)^{1/2} \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big) \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big) \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big) \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big) \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big) \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big) \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big) \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big) \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big) \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big) \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big) \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big) \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big) \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big) \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big) \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big) \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big) \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big) \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big) \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{2} \bigg/ \Big(N_{\phi} \Big) \bigg] + C \bigg[D_{1} \cdot K_{3} - D_{$$

dove i simboli utilizzati assumono il significato che segue:

C = coesione terreno;

 Φ = angolo di attrito terreno;

y = peso specifico terreno;

D₁ = interasse tra i pali;

D2 = spazio libero fra due pali consecutivi;

N_Φ =
$$tag^2(\pi/4 + \phi/2)$$

$$\begin{split} K_1 &= \left(N_{\phi}\right)^{1/2} tag\phi + N_{\phi} - 1 \\ K_2 &= \left(D_1 - D_2\right) \! / D_2 \cdot N_{\phi} tag\left(\pi/8 + \phi/4\right) \\ K_3 &= \! \left[2 tag\phi + 2 \! \left(N_{\phi}\right)^{1/2} + 1 \! / \! \left(N_{\phi}\right)^{1/2} \right] \! / \! \left[\left(N_{\phi}\right)^{1/2} tag\phi + N_{\phi} - 1 \right] \end{split}$$

La forza totale, relativamente ad uno strato di terreno in movimento di spessore H, è stata ottenuta integrando l'espressione precedente.

In presenza di terreni granulari (condizione drenata), nei quali si può assumere c = 0, l'espressione diventa:

$$P = 1/2 \gamma \cdot H^2 / N_{\varphi} [D_1 (D_1/D_2)^{k1} \cdot e^{k2} - D_2]$$

Per terreni coesivi (condizioni non drenate), con $\phi = 0$ e C $\neq 0$, si ha:

$$\begin{split} P(z) &= C\big[D_1\big(3\ln(D_1/D_2\big) + \big(D_1 - D_2\big)/D_2\tan\pi/8\big) - 2\big(D_1 - D_2\big)\big] + \gamma \cdot Z\big(D_1 - D_2\big) \\ P &= \int_0^H P(Z)dZ \\ P &= C \cdot H\big[D_1\big(3\ln(D_1/D_2\big) + \big(D_1 - D_2\big)/D_2\tan\pi/8\big) - 2\big(D_1 - D_2\big)\big] + 1/2\gamma H^2\big(D_1 - D_2\big) \end{split}$$

Il dimensionamento della cortina di pali, che come già detto deve conferire al pendio un incremento del coefficiente di sicurezza e garantire l'integrità del meccanismo palo-terreno, è abbastanza problematica. Infatti tenuto conto della complessità dell'espressione del carico P, influenzata da diversi fattori legati sia alle caratteristiche meccaniche del terreno sia alla geometria del manufatto, non è facile con una sola elaborazione pervenire alla soluzione ottimale. Per raggiungere lo scopo è necessario pertanto eseguire diversi tentativi finalizzati:

- A trovare, sul profilo topografico del pendio, la posizione che garantisca, a parità di altre condizioni, una distribuzione dei coefficienti di sicurezza più confortante;
- A determinare la disposizione planimetrica dei pali, caratterizzata dal rapporto fra interasse e distanza fra i pali (D2/D1), che consenta di sfruttare al meglio la resistenza del complesso palo-terreno; sperimentalmente è stato riscontrato che,escludendo i casi limiti (D2 = 0 P→ ∞ e D2 = D1 P→ valore minimo), i valori più idonei allo scopo sono quelli per i quali tale rapporto risulta compreso fra 0,60 e 0,80;
- A valutare la possibilità di inserire più file di pali ed eventualmente, in caso affermativo, valutare, per le file successive, la posizione che dia più garanzie in termini di sicurezza e di spreco di materiali;
- Ad adottare il tipo di vincolo più idoneo che consente di ottenere una distribuzione più regolare delle sollecitazioni; sperimentalmente è stato constatato che quello che assolve, in maniera più soddisfacente, allo scopo è il vincolo che impedisce le rotazioni alla testa del palo.

Metodo del carico limite di Broms

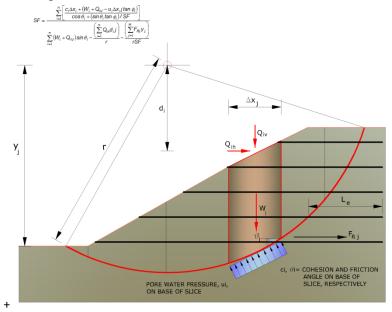
Nel caso in cui il palo sia caricato ortogonalmente all'asse, configurazione di carico presente se un palo inibisce il movimento di una massa in frana, la resistenza può essere affidata al suo carico limite orizzontale. Il problema di calcolo del carico limite orizzontale è stato affrontato da Broms sia per il mezzo puramente coesivo che per il mezzo incoerente, il metodo di calcolo seguito è basato su alcune ipotesi semplificative per quanto attiene alla reazione

esercitata dal terreno per unità di lunghezza di palo in condizioni limite e porta in conto anche la resistenza a rottura del palo (*Momento di plasticizzazione*).

Elemento Rinforzo

I Rinforzi sono degli elementi orizzontali, la loro messa in opera conferisce al terreno un incremento della resistenza allo scorrimento .

Se l'elemento di rinforzo interseca la superficie di scorrimento, la forza resistente sviluppata dall'elemento entra nell'equazione di equilibrio del singolo concio, in caso contrario l'elemento di rinforzo non ne influenza la stabilità.



Le verifiche di natura interna hanno lo scopo di valutare il livello di stabilità dell'ammasso rinforzato, quelle calcolate sono la verifica a rottura dell'elemento di rinforzo per trazione e la verifica a sfilamento (*Pullout*). Il parametro che fornisce la resistenza a trazione del rinforzo, T_{Allow}, si calcola dalla resistenza nominale del materiale con cui è realizzato il rinforzo ridotto da opportuni coefficienti che tengono conto dell'aggressività del terreno, danneggiamento per effetto creep e danneggiamento per installazione.

L' altro parametro è la resistenza a sfilamento (*Pullout*) che viene calcolata attraverso la seguente relazione:

$$T_{Pullout} = 2 \cdot \text{Le} \cdot \sigma'_{V} \cdot f_{b} \cdot tan(\delta)$$

Per geosintetico a maglie chiuse:

$$f_b = \frac{\tan(\delta)}{\tan(\varphi)}$$

dove:

Rappresenta l'angolo di attrito tra terreno e rinforzo;

T_{Pullout} Resistenza mobilitata da un rinforzo ancorato per una lunghezza L_e all'interno della parte stabile del terreno;

Le Lunghezza di ancoraggio del rinforzo all'interno della parte stabile;

fb Coefficiente di *Pullout*;

 σ'_{V} Tensione verticale, calcolata alla profondità media del tratto di rinforzo ancorato al terreno.

Ai fini della verifica si sceglie il valore minimo tra T_{Allow} e T_{Pullout}, la verifica interna verrà soddisfatta se la forza trasmessa dal rinforzo generata a tergo del tratto rinforzato non supera il valore della T'.

RELAZIONE DI VERIFICA DEL VERSANTE